Welcome to CS103!

Hello from Cynthia Bailey Lee!

"Like a cat lady, but for chickens." (a friend's description of me)

Hello from Alex Aiken!

Fun fact: last December, traveled with family to Reunion Island, off the coast of Madagascar!

Are there "laws of physics" in computer science?

Key Questions in CS103

- What problems can you solve with a computer?
- Computability Theory
- Why are some problems harder to solve than others?
- Complexity Theory
- How can we be certain in our answers to these questions?
- Discrete Mathematics

Course Website

https://cs103.stanford.edu

All course content
will be hosted here,
except for lecture
videos.

Prerequisite / Corequisite

CS106B

> Some problem sets will have small coding components. We'll also reference some concepts from CS106B, particularly recursion, throughout the quarter.

There aren't any math prerequisites for this course -high-school algebra should be enough!

Problem Set 0

- Your first assignment, Problem Set 0, goes out today. It's due Friday at 2:30pm PT.
- This assignment requires you to make sure all the tools you need for the class are working on your computer.
- It's good to start early in case you encounter any technical issues getting set up!

CS103A Course

- An extra 1-unit course for those who want extra help with course material.
- Provides extra practice to help onramp to CS103 psets.
- Tuesdays 1:30-3:20pm, starting week 2.
- Email Grace Alwan galwan@stanford.edu for more information.
- There is a link to the application on our course syllabus page of the website.

Grading

Grading

■ Problem Sets

Ten Problem Sets

Problem sets may be completed individually or
in pairs.

Grading

■ Problem Sets

■ Midterms

Two Midterm Exams

Week 5: Tues May 2, 7-10pm
Week 8: Tues May 23, 7-10pm

Grading

Grading

We've got a big journey ahead of us.

Let's get started!

Introduction to Set Theory

A set is an unordered collection of distinct objects, which may be anything, including other sets.

A set is an unordered collection of distinct objects, which may be anything, including other sets.

A set is an unordered collection of distinct objects, which may be anything, including other sets.

These are two different descriptions of exactly the same set.

Two sets are equal when they have the same contents, ignoring order.

These are also two different descriptions of exactly the same set.
(But please use the description without duplication :-))

Sets cannot contain duplicate elements. Any repeated elements are ignored.

The objects that make up a set are called the elements of that set.

This symbol means "is an element of."

The objects that make up a set are called the elements of that set.

The objects that make up a set are called the elements of that set.

Sets can contain any number of elements.

$\}=\varnothing$

The empty set is the set with no elements.

We denote the empty set using this symbol.

Sets can contain any number of elements.

$1 \xrightarrow{?}$
 $\{1\}$

Question: Are these objects equal?

1

 $\{1\}$

This is a number.

This is a set. It contains a number.

Question: Are these objects equal?

1 $\neq\{1\}$

This is a

 number.This is a set. It contains a number.

Question: Are these objects equal?

$?$
 $\{\varnothing\}$

Question: Are these objects equal?

$\stackrel{?}{=}$

$\{\varnothing\}$

This is the empty set.

This is a set with the empty set in it.

Question: Are these objects equal?

\varnothing
 $\neq\{\varnothing\}$

Question: Are these objects equal?
$\neq\{x\}$

No object x is equal to the set containing x.

Infinite Sets

- Some sets contain infinitely many elements!
- The set $\mathbb{N}=\{0,1,2,3, \ldots\}$ is the set of all the natural numbers.
- Some mathematicians don't include zero; in this class, assume that 0 is a natural number.
- The set $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is the set of all the integers.
- Z is from German "Zahlen."
- The set \mathbb{R} is the set of all real numbers.
$\cdot e \in \mathbb{R}, \Pi \in \mathbb{R}, 4 \in \mathbb{R}$, etc.

Describing Complex Sets

- Here are some English descriptions of infinite sets:
"The set of all even natural numbers."
"The set of all real numbers less than 137."
"The set of all negative integers."
- To describe complex sets like these mathematically, we'll use set-builder notation.

Even Natural Numbers

$\{n \mid n \in \mathbb{N}$ and n is even $\}$

Even Natural Numbers
$\{n \mid n \in \mathbb{N}$ and n is even $\}$

Even Natural Numbers

$\{n \mid n \in \mathbb{N}$ and n is even $\}$

The set of all n

Even Natural Numbers

$\{n \mid n \in \mathbb{N}$ and n is even $\}$

The set of all n
where

Even Natural Numbers

$\{n \mid n \in \mathbb{N}$ and n is even $\}$

The set of all n
where
n is a natural number

Even Natural Numbers

$\{n \mid n \in \mathbb{N}$ and n is even $\}$

The set of all n
where
n is a natural number

and n is even

Even Natural Numbers

$\{n \mid n \in \mathbb{N}$ and n is even $\}$

The set of all n

where
n is a natural number

and n is even

$\{0,2,4,6,8,10,12,14,16, \ldots\}$

Set Builder Notation

- A set may be specified in set-builder notation:
$\{x \mid$ some property x satisfies $\}$
$\{x \in S \mid$ some property x satisfies $\}$
- For example:
$\{n \mid n \in \mathbb{N}$ and n is even $\}$
$\{C \mid C$ is a set of US currency \}
$\{r \in \mathbb{R} \mid r<3\}$
$\{n \in \mathbb{N} \mid n<3\}$ (the set $\{0,1,2\}$)

Subsets and Power Sets

Subsets

- A set S is called a subset of a set T (denoted $\boldsymbol{S} \subseteq \mathbf{T}$) if all elements of S are also elements of T.
- Examples:
- $\{1,2,3\} \subseteq\{1,2,3,4\}$
- $\{b, c\} \subseteq\{a, b, c, d\}$
- $\{\mathrm{H}, \mathrm{He}, \mathrm{Li}\} \subseteq\{\mathrm{H}, \mathrm{He}, \mathrm{Li}\}$
- $\mathbb{N} \subseteq \mathbb{Z}$ (every natural number is an integer)
- $\mathbb{Z} \subseteq \mathbb{R}$ (every integer is a real number)

Subsets and Elements

Subsets and Elements

- We say that $\boldsymbol{S} \in \boldsymbol{T}$ if, among the elements of T, one of them is exactly the object S.
- We say that $\boldsymbol{S} \subseteq \boldsymbol{T}$ if S is a set and every element of S is also an element of T. (S has to be a set for the statement $S \subseteq T$ to be true.)
- Although these concepts are similar, they are not the same! Not all elements of a set are subsets of that set and vice-versa.
- We have a resource on the course website, the Guide to Elements and Subsets, that explores this in more depth.

$S=\{(3)\}$

This is the power set of S, the set of all subsets of S. We write the power set of S as $\wp(S)$.
Formally, $\wp(S)=\{T \mid T \subseteq S\}$.
(Do you see why?)

What is $\wp(\varnothing) ?$

Answer: $\{\varnothing\}$

Remember that $\varnothing \neq\{\varnothing\}$!

Cardinality

Cardinality

Cardinality

- The cardinality of a set is the number of elements it contains.
- If S is a set, we denote its cardinality as $|\boldsymbol{S}|$.
- Examples:
- $\mid\{$ whimsy, mirth $\} \mid=2$
- $|\{\{a, b\},\{c, d, e, f, g\},\{h\}\}|=3$
- $|\{1,2,3,3,3,3,3\}|=3$
- $|\{n \in \mathbb{N} \mid n<4\}|=|\{0,1,2,3\}|=4$
- $|\varnothing|=0$
- $|\{\varnothing\}|=1$

The Cardinality of \mathbb{N}

- What is $|\mathbb{N}|$?
- There are infinitely many natural numbers.
- $|\mathbb{N}|$ can't be a natural number, since it's infinitely large.

The Cardinality of \mathbb{N}

- What is $|\mathbb{N}|$?
- There are infinitely many natural numbers.
- $|\mathbb{N}|$ can't be a natural number, since it's infinitely large.
- We need to introduce a new term.
- Let's define \aleph „ $=|\mathbb{N}|$.
- No is pronounced "aleph-zero," "alephnought," or "aleph-null."

Consider the set

$S=\{n \mid n \in \mathbb{N}$ and n is even $\}$.

What is $|S|$?

How Big Are These Sets?

How Big Are These Sets?

Comparing Cardinalities

- By definition, two sets have the same size if there is a way to pair their elements off without leaving any elements uncovered.
- The intuition:

Comparing Cardinalities

- By definition, two sets have the same size if there is a way to pair their elements off without leaving any elements uncovered.
- The intuition:

Infinite Cardinalities

$$
S=\left\{n \left\lvert\, n \in \mathbb{N} \begin{array}{l}
\text { and } n \text { is even }\} \\
\begin{array}{c}
\text { Two sets have the same size if } \\
\text { there is a way to pair their } \\
\text { elements off without leaving } \\
\text { any elements uncovered }
\end{array}
\end{array}\right.\right.
$$

Infinite Cardinalities

$$
S=\left\{n \left\lvert\, n \in \mathbb{N} \frac{\begin{array}{c}
\text { and } n \text { is even_t } \\
\begin{array}{c}
\text { there is a } a \text { way to to pair their if } \\
\text { elements off without leaving } \\
\text { any elements uncovered }
\end{array}
\end{array}}{\text { and }}\right.\right.
$$

Infinite Cardinalities

$\begin{array}{lllllllllll}\mathbb{N} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots\end{array}$
$\begin{array}{lllllll} \\ S & 0 & 2 & 6 & \end{array}$
$S=\{n \mid n \in \mathbb{N}$ and n is even $\}$

Infinite Cardinalities

$\begin{array}{lllllllllll}\mathbb{N} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\ & \uparrow & \cdots \\ S & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & & & & & \\ & 0 & & \downarrow & & \\ & 6 & 8 & 10 & 12 & 14 & 16 & \ldots\end{array}$

$$
n \leftrightarrow 2 n
$$

$S=\{n \mid n \in \mathbb{N}$ and n is even $\}$
$|S|=|\mathbb{N}|=\aleph_{\circ}$

Important Question:

Do all infinite sets have the same cardinality?

$$
\begin{aligned}
s & =\{(S, S\} \\
\rho(S)=\{ & \{\emptyset, \mid S\},\{(S), S\}\} \\
& |S|<|\wp(S)|
\end{aligned}
$$

$$
\begin{aligned}
& S=\{0,3,0\}
\end{aligned}
$$

$$
\begin{aligned}
& |S|<|\wp(S)|
\end{aligned}
$$

$$
\begin{gathered}
S=\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}\} \\
\wp(S)=\{
\end{gathered}
$$

Ǿ,
$\{a\},\{b\},\{c\},\{d\}$,
$\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\}$
$\{a, b, c\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$, $\{a, b, c, d\}$
\}
$|S|<|\wp(S)|$

If $|S|$ is infinite, what is the relation between $|S|$ and $|\wp(S)|$?

$$
\text { Does }|S|=|\wp(S)| \text { ? }
$$

If $|S|=|\wp(S)|$, we can pair up the elements of S and the elements of $\wp(S)$ without leaving anything out.

If $|S|=|\wp(S)|$, we can pair up the elements of S and the elements of $\wp(S)$ without leaving anything out.

If $|S|=|\wp(S)|$, we can pair up the elements of S and the subsets of S without leaving anything out.

If $|S|=|\wp(S)|$, we can pair up the elements of S and the subsets of S without leaving anything out.

If $|S|=|\wp(S)|$, we can pair up the elements of S and the subsets of S without leaving anything out.

What would that look like?
$\chi_{0} \longleftrightarrow\left\{\chi_{0}, \chi_{2}, \chi_{4}, \ldots\right\}$
$\chi_{1} \longleftrightarrow\left\{\chi_{3}, \chi_{5}, \ldots\right\}$
$X_{2} \longleftrightarrow\left\{X_{0}, X_{1}, X_{2}, X_{5}, \ldots\right\}$
$X_{3} \longleftrightarrow\left\{X_{1}, X_{4}, \ldots\right\}$
$X_{4} \longleftrightarrow\left\{\chi_{2}, \ldots\right\}$
$\chi_{5} \longleftrightarrow\left\{\chi_{0}, \chi_{4}, \chi_{5}, \ldots\right\}$
$\ldots \longleftrightarrow\{\ldots\}$

The Diagonalization Proof

- No matter how we pair up elements of S and subsets of S, the complemented diagonal won't appear in the table.
- In row n, the nth element must be wrong.
- No matter how we pair up elements of S and subsets of S, there is always at least one subset left over.
- This result is Cantor's theorem: Every set is strictly smaller than its power set:

$$
\text { If } S \text { is a set, then }|S|<|\wp(S)| .
$$

Two Infinities...

- By Cantor's Theorem:

$$
|\mathbb{N}|<|\wp(\mathbb{N})|
$$

...And Beyond!

- By Cantor's Theorem:

$$
\begin{aligned}
|\mathbb{N}| & <|\wp(\mathbb{N})| \\
|\wp(\mathbb{N})| & <|\wp(\wp(\mathbb{N}))| \\
|\wp(\wp(\mathbb{N}))| & <|\wp(\wp(\wp(\mathbb{N})))| \\
|\wp(\wp(\wp(\mathbb{N})))| & <|\wp(\wp(\gamma(\wp(\mathbb{N}))))|
\end{aligned}
$$

- Not all infinite sets have the same size!
- There is no biggest infinity!
- There are infinitely many infinities!

What does this have to do with computation?
"The set of all computer programs"
"The set of all problems to solve"

Things on Strings

- A string is a sequence of characters.
- Two fun facts about strings:
- There are at most as many programs as there are strings. (All programs are strings)
- There are at least as many problems as there are sets of strings.
- There's an appendix to this slide deck that provides an overview of why these claims are true.
- These facts, plus Cantor's theorem, have terrifying implications.

Every computer program is a string.
So, the number of programs is at most the number of strings.

From Cantor's Theorem, we know that there are more sets of strings than strings.

There are at least as many problems as there are sets of strings.
\mid Programs $|\leq|$ Strings $|<| \wp($ Strings $)|\leq|$ Problems \mid

Every computer program is a string.
So, the number of programs is at most the number of strings.

From Cantor's Theorem, we know that there are more sets of strings than strings.

There are at least as many problems as there are sets of strings.

|Programs| < |Problems|

There are more problems to solve than there are programs to solve them.
|Programs| < |Problems|

It Gets Worse

- Using more advanced set theory, we can show that there are infinitely more problems than solutions.
- In fact, if you pick a totally random problem, the probability that you can solve it is zero.
- More troubling fact: We've just shown that some problems are impossible to solve with computers, but we don't know which problems those are!

We need to develop a more nuanced understanding of computation.

Where We're Going

- What makes a problem impossible to solve with computers?
- Is there a deep reason why certain problems can't be solved with computers, or is it completely arbitrary?
- How do you know when you're looking at an impossible problem?
- Are these real-world problems, or are they highly contrived?
-How do we know that we're right?
- How can we back up our pictures with rigorous proofs?
- How do we build a mathematical framework for studying computation?

Next Time

- Mathematical Proof
- What is a mathematical proof?
- How can we prove things with certainty?

Extra Slides

(We will revisit the diagonalization proof in more detail later in Week 4.What follows is a second example of finding two sets have equal cardinality even though their cardinality might appear different, and some additional explanation of the relationship between strings and problems.)

Infinite Cardinalities

$\begin{array}{lllllllllll}\mathbb{N} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots\end{array}$
$\begin{array}{lllllllllll}\mathbb{Z} & \ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & \ldots\end{array}$

Infinite Cardinalities

$$
\begin{array}{lllllllllll}
\mathbb{N} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
& & & & & & & & & & \\
\mathbb{Z} & & & & & 0 & 1 & 2 & 3 & 4 & \ldots \\
& & & & & 0 & 1 & & & & \\
& \ldots & -3 & -2 & -1 & & & & & & \\
& \ldots & &
\end{array}
$$

Infinite Cardinalities

Infinite Cardinalities

$\begin{array}{llll}\text {... } & -3 & -2 & -1\end{array}$
Two sets have the same size if there is a way to pair their elements off without leaving any elements uncovered

Infinite Cardinalities

$\begin{array}{lllllllllll}\mathbb{N} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots\end{array}$
$\begin{array}{lllllllllll}\mathbb{Z} & \ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & \ldots\end{array}$

Infinite Cardinalities

$\begin{array}{lllllllllll}\mathbb{N} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots\end{array}$
\mathbb{Z}

$$
\begin{array}{cccccccccc}
\ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & \ldots
\end{array}
$$

Infinite Cardinalities

$$
\begin{array}{lllllllllll}
\mathbb{N} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
& & & & & & & & & & \\
\mathbb{Z} & 0 & & 1 & & 2 & & 3 & & 4 & \ldots \\
& & & & & & & & & & \\
& & \ldots & -3 & -2 & -1 & & & & & \\
& & &
\end{array}
$$

Infinite Cardinalities

Infinite Cardinalities

Pair nonnegative integers with even natural numbers.

Infinite Cardinalities

Pair nonnegative integers with even natural numbers.

Infinite Cardinalities

Pair nonnegative integers with even natural numbers.

Infinite Cardinalities

Pair nonnegative integers with even natural numbers. Pair negative integers with odd natural numbers.

Infinite Cardinalities

Pair nonnegative integers with even natural numbers. Pair negative integers with odd natural numbers.

Appendix: String Things

Strings and Programs

- The source code of a computer program is just a (long, structured, well-commented) string of text.
- All programs are strings, but not all strings are necessarily programs.

\mid Programs $|\leq|$ Strings \mid

Strings and Problems

- There is a connection between the number of sets of strings and the number of problems to solve.
- Let S be any set of strings. This set S gives rise to a problem to solve:
Given a string w, determine whether $w \in S$.

Strings and Problems

Given a string w, determine whether $w \in S$.

- Suppose that S is the set

$$
S=\{\text { "a", "b", "c", ..., "z" \} }
$$

- From this set S, we get this problem: Given a string w, determine whether w is a single lower-case English letter.

Strings and Problems

Given a string w, determine whether $w \in S$.

- Suppose that S is the set

$$
S=\{\text { "0", "1", "2", ..., "9", "10", "11", ... \} }
$$

- From this set S, we get this problem:

Given a string w, determine whether w represents a natural number.

Strings and Problems

Given a string w, determine whether $w \in S$.

- Suppose that S is the set

$$
S=\{p \mid p \text { is a legal } \mathrm{C}++ \text { program }\}
$$

- From this set S, we get this problem:

Given a string w, determine whether w is a legal C++ program.

Strings and Problems

- Every set of strings gives rise to a unique problem to solve.
- Other problems exist as well.

\mid Sets of Strings $|\leq|$ Problems \mid

